FULL PAPER

Two New Triterpenoid Glycosides from the Roots of Rosa cymosa TRATT.

by Guo-Xu Ma^a)¹), Xiao-Yan Huang^b)¹), Hua-Nian Dai^b), Xiao-Qing Zhong^c), Yan-Lin Zhou^c), Zuo-Lin Su^d), Ying-Zi He^b), Jun-Shan Yang^a), Jing-Quan Yuan^{*b})^e), and Xu-Dong Xu^{*a})

^a) Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P. R. China (phone: + 86 10 57833296; e-mail: xdxu@implad.ac.cn)

^b) College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, P. R. China

(phone: + 86 0771 5601290; e-mail: yjqgx@163.com)

^c) Guilin Sanjin Pharmaceutical Company Limited, Guilin 541004, P. R. China

^d) Guangxi Lingfeng Pharmaceutical Company Limited, Hezhou 542800, P. R. China

^e) Guangxi Institute of Medicinal Plant, Nanning 530023, P. R. China

Two new triterpenoid glycosides, $3\alpha,19\alpha,23\alpha$ -trihydroxy-2-oxo-12-ursen-28-O- β -D-glucopyranoside (1) and $3\alpha,19\alpha$, 23α -trihydroxy-2-oxoolean-12-en-28-O- β -D-glucopyranoside (2) as well as three known compounds, $2\alpha,3\alpha,19\alpha$ -trihydroxyolean-12-en-28-O- β -D-glucopyranoside (3), $2\alpha,3\alpha,19\alpha,23$ -tetrahydroxy-12-ursen-28-O- β -D-glucopyranoside (4), and $2\alpha,3\beta,19\alpha$, 23-tetrahydroxyurs-12-en-28-oic acid (5) were isolated from 75% EtOH extract of *Rosa cymosa*. Their structures were elucidated by extensive spectroscopic methods. All the isolated compounds displayed moderate inhibitory activity against LPS-induced NO production in macrophages.

Keywords: Rosa cymosa TRATT., Triterpenoid glycosides, Anti-inflammatory activity, Ursane triterpenes, Oleanane triterpenes.

Introduction

Rosa cymosa TRATT. is a member of the genus Rosa in the Rosaceae family, and is mainly distributed in the south of China [1]. The roots of R. cymosa were traditionally used as folk medicine for the treatment of rheumatoid arthritis, contusions, diarrhea, and descensus uteri [2] [3]. Modern pharmacological studies indicated that the roots of R. cymosa displayed significant biological activities, such as anticoagulation [4][5], antibiosis [3], antiinflammatory [6], and antioxidant [7]. Recent phytochemical studies suggested that the triterpenoid constituents were mainly responsible for the biological activities of this plant. With the aim of finding new bioactive triterpenoid agents, the 75% EtOH extraction of this plant were examined, and two new triterpenoid glycosides, named as 3α , 19α , 23α -trihydroxy-2-oxo-12-ursen-28-O- β -D-glucopyranoside (1) and 3α , 19α , 23α -trihydroxy-2-oxoolean-12-en- $28-O-\beta$ -D-glucopyranoside (2) as well as three known compounds (Fig. 1) were obtained. In this article, we describe the isolation and structure determination of the isolated compounds, and their inhibitory activity against lipopolysaccharide (LPS)-induced NO production in macrophages.

Results and Discussion

Compound 1 was isolated as a white amorphous powder with $\left[\alpha\right]_{D}^{20} = +27.4$ (c = 0.12, MeOH), exhibiting a quasimolecular ion peak at m/z 687.3810 $[M + Na]^+$ (calc. for 687.3792) in the positive-ion mode. In conjunction with the analysis of ¹H- and ¹³C-NMR (APT) (Table 1) spectra, the formula of compound 1 was deduced as C₃₆H₅₆O₁₁. Its IR spectrum showed the presence of OH group absorptions at 3573 - 3392 cm⁻¹, CO signal at 1689 cm^{-1} , and C=C signal at 1653 cm^{-1} . The ¹H-NMR spectrum 1 displayed the presence of six Me signals at $\delta(H)$ 0.72 (s), 0.90 (s), 1.00 (d, J = 6.6), 1.07 (s), 1.27 (s), 1.52(s); one olefinic H-atom at $\delta(H)$ 5.41 (br. s, H–C(12)); one O-bearing CH signal at $\delta(H)$ 5.00 (s), two HO-CH₂ groups at $\delta(H)$ 3.93 (d, J = 10.8), 3.64 (d, J = 10.8), 4.30 (br. d, J = 12.0), 4.38 (br. d, J = 12.0); and one anomeric H-atom signal at $\delta(H)$ 6.18 (d, J = 8.4). The above data suggested that 1 was an ursane triterpenoid saponin derivative with a sugar moiety [8 - 11]. The ¹³C-APT spectrum displayed 36 C-atom signals (Table 1) including six Me C-atom signals at δ (C) 14.2, 17.0, 17.4, 17.4, 24.8, 27.3; two olefinic C-atom signals at $\delta(C)$ 124.2 (C(12)), 139.8 (C(13)); two CO signals at δ (C) 177.3 (C(28)), 213.1 (C(2)); one sugar moiety C-atom signals at δ (C) 96.2, 74.4, 79.6, 71.7, 79.7, 62.8; and other three oxygenated C-atom signals at $\delta(C)$ 78.0, 65.3, 73.0. The assignment of

¹) These authors contributed equally to this work.

Fig. 1. The structures of compounds 1-5

¹H-NMR and ¹³C-APT spectroscopic data of **1** were based on the HSQC, HMBC, and ¹H, ¹H-COSY spectrum. In fact, the above data of compound 1 were similar to those of the known compound 2α , 3α , 19α , 23-tetrahydroxy-12-ursen-28-O- β -D-glucopyranoside (4) [12][13], except for the OH group at C(2) in compound 4 wherein it was Obearing to CO group in compound 1. In the HMBC spectrum (Fig. 2), the correlations from H–C(3) (δ (H) 5.00) to C(2) (δ (C) 213.1) and C(4) (δ (C) 49.0) confirmed the difference. The sugar moiety was located at C(28) on the basis of the correlation from the anomeric H-atom signal at $\delta(H)$ 6.18 (d, J = 8.4) to the CO signal at $\delta(C)$ 177.3 (C (28)). The type and absolute configuration of the sugar was identified as D-glucose on the basis of TLC method comparison with authentic monosaccharide (CHCl₃/ MeOH/H₂O 3:2:0.2, visualization with EtOH/5%. H₂SO₄ spraying), followed by HPLC analysis. The NOESY spectrum was also employed to confirm the configuration of compound 1. The NOE correlations of H–C(3) (δ (H) 5.00, s) with Me(24) (δ (H) 0.72, s) indicated the α -orientation of the OH group. Therefore, the structure of 1 was elucidated as 3a,19a,23a-trihydroxy-2-oxo-12-ursen-28-O- β -D-glucopyranoside.

Compound 2 was isolated as a white amorphous powder with $[\alpha]_D^{20} = +19.1$ (c = 0.12, MeOH). Its molecular formula was assigned as C36H56O11 on the basis of HR-ESI-MS at m/z 687.3802 $[M + Na]^+$ (calc. for 687.3790) in the positive-ion mode. Its IR spectrum showed the presence of OH group absorptions at 3623 - 3452 cm⁻¹, CO signal at 1699 cm⁻¹, and C=C bond at 1643 cm⁻¹. The ¹H and ¹³C-NMR (APT) (*Table 1*) spectroscopic data were quite similar to those of 1, except for the Me group at C (19) in compound 1 wherein it was transferred to C(20) in compound 2. This difference was fully supported by the 2D-NMR spectra. In the HMBC spectrum, the correlations from the H-atom signal of an O-bearing group at δ (H) 3.55 (d, J = 4.8, H–C(19)) to δ (C) 45.0 (C(18)), 35.9 (C(20)), and Me signals at $\delta(H)$ 1.12 (s, Me(29)), 0.96 (s, Me(30)) to C(20) (δ (C) 35.9) indicated that Me(29) and Me(30) were both attached to C(20). Therefore, compound 2 was an oleanane triterpenoid saponin [6][9]. Acid hydrolysis of **2** afforded sugar moiety of D-glucose and identified by TLC and HPLC analysis. In the NOESY spectrum, the enhancement from H–C(3) (δ (H) 5.00) to Me(24) (δ (H) 0.81) and Me(24) to Me(25) (δ (H) 0.97) indicated that the OH group at C(3) was α -oriented. Thus, the structure of **2** was identified as 3α ,19 α ,23 α -trihydroxy-2-oxoolean-12-en-28-*O*- β -D-glucopyranoside.

The three known compounds, $2\alpha,3\alpha,19\alpha$ -trihydroxyolean-12-en-28-*O*- β -D-glucopyranoside (**3**) [14][15], $2\alpha,3\alpha,19\alpha,23$ tetrahydroxy-12-ursen-28-*O*- β -D-glucopyranoside (**4**) [5], and $2\alpha,3\beta,19\alpha,23$ -tetrahydroxyurs-12-en-28-oic acid (**5**) [13] were identified by comparing their ¹H- and ¹³C-NMR data with the reported literatures.

All five compounds were studied for their anti-inflammatory activities on LPS-induced nitric oxide (NO) production in RAW 264.7. The results are presented in *Table 2*. It may be said that all the tested compounds showed moderate inhibitory activities against the production of NO with IC_{50} values between 3.24 and 9.28 µg/ml compared to aminoguanidine used as the positive control.

The work was financially supported by *National Natural Science Foundation of China* (No. 81360683) and *Guangxi Scientific Research and Technology Development Projects* (No. 1140001-38) and *Guangxi Natural Science Foundation Program* (2010GXNSFD013052) and the Technological Large Platform for Comprehensive Research and Development of New Drugs in the Twelfth Five-Year 'Significant New Drugs Created' Science and Technology Major Projects (No. 2012ZX09301-002-001). The authors also thank Dr. *Dev Sooranna*, Imperial College London, for editing the manuscript.

Experimental Part

General

Optical rotations: *PerkinElmer 341* digital polarimeter (*PerkinElmer*, Norwalk, CT, USA). UV and IR spectra: *Shimadzu UV2550* and *FTIR-8400S* spectrometers (*Shimadzu*, Kyoto, Japan), respectively. NMR Spectra:

Table 1. ¹H- and ¹³C-NMR Data (600 MHz and 150 MHz, resp., in (D₅)pyridine) for Compounds 1 - 2

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Position	1		2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\delta(H)$ (<i>J</i> in Hz)	$\delta(C)$, type	$\delta(H) (J \text{ in Hz})$	$\delta(C)$, type
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	2.42 $(d, J = 12.0)$	54.1, CH ₂	2.46 (d, J = 12.0)	53.9, CH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$2.11 \ (d, J = 12.0)$		2.19 (d, J = 12.0)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		213.1, C		213.1, C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	5.00 (s)	78.0, CH	5.00(s)	78.0, CH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4		49.0, C		42.6, C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2.07 - 2.10 (m)	47.7, CH	2.79 - 2.81 (m)	48.4, CH
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	1.24 - 1.27 (m)	19.2, CH ₂	1.33 - 1.36 (m)	19.3, CH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1.47 - 1.49 (m)		1.59 - 1.62 (m)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	1.36 - 1.38 (m)	33.2, CH ₂	1.36 - 1.38 (m)	33.4, CH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.57 - 1.61 (m)		1.95 - 1.97 (m)	11 0 C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1.00 0.01 ()	42.6, C	1.00 0.00 ()	41.0, C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	$1.99 - 2.01 \ (m)$	46.9, CH	$1.99 - 2.02 \ (m)$	47.0, CH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1.06 1.00 ()	38.0, C		36.8, C
12 5,41 (r, $J = 2.4$) 124, CH 5,47 (r, $J = 2.4$) 125,0 CH 13 1398, C 144,9, C 144,9, C 14 39, C 441, C 15 2,30 - 2,34 (m) 26, CH ₂ 2.26 - 2.29 (m) 29, C, CH ₂ 108 - 1.12 (m) 103 - 1.05 (m) 103 - 1.05 (m) 283, CH ₂ 16 2.94 - 2.97 (m) 264, CH ₂ 2.64 - 2.66 (m) 283, CH ₂ 192 - 1.95 (m) 1.99 - 2.01 (m) 199 504, C 17 504, C 3.55 (br. s) 450, CH 19 73.0, C 3.55 (d, J = 4.8) 814, CH 20 1.18 - 1.21 (m) 42.5, CH 3.3 - 1.35 (m) 29.3, CH ₂ 19 73.0, C 3.55 (d, J = 4.8) 814, CH 21 1.31 - 1.34 (m) 27.0, CH ₂ 1.33 - 1.35 (m) 29.3, CH ₂ 124 - 1.26 (m) 1.33 - 1.35 (m) 29.3, CH ₂ 1.00 - 1.02 (m) 32.9, CH ₂ 124 - 1.26 (m) 1.33 - 1.35 (m) 29.3, CH ₂ 1.00 - 1.02 (m) 32.9, CH ₂ 124 - 1.26 (m) 1.32 - 1.36 (m) 7.3 (d, J = 10.8) 65.3, CH ₂ 402 (d, J = 10.8)<	11	1.86 - 1.89 (m)	24.4, CH ₂	5 47 (, , , , , , , , , , , , , , , , , ,	24.5, CH ₂
13 193, C 144, C 14 439, C 441, C 15 2.30 - 2.34 (m) 296, CH ₂ 2.26 - 2.29 (m) 294, CH ₂ 1.08 - 1.12 (m) 1.03 - 1.05 (m) 294, CH ₂ 2.64 - 2.66 (m) 28.3, CH ₂ 16 2.94 - 2.97 (m) 504, C 504, C 504, C 504, C 19 199 - 2.01 (m) 199 - 2.01 (m) 199 2.01 (m) 29.3, CH ₂ 17 50.4, C 3.56 (br. s) 45.0, CH 199 201 (m) 29.3, CH ₂ 19 730, C 3.55 (d, J = 4.8) 81.4, CH 29.3, CH ₂ 1.01 - 1.02 (m) 29.3, CH ₂ 191 - 1.94 (m) 22.1 - 2.24 (m) 23.3 - 1.35 (m) 29.3, CH ₂ 1.00 - 1.02 (m) 32.9, CH ₂ 1.02 (m) 32.9, CH ₂ 1.02 (m) 32.9, CH ₂ 1.24 - 1.26 (m) 3.3 - 1.36 (m) 32.3 (L = 10.8) 65.3, CH ₂ 4.02 (d, J = 10.8) 65.3, CH ₂ 2.02 (d, J = 10.8) 65.3, CH ₂ 2.02 (d, J = 10.8) 65.3, CH ₂ 2.02 (m) 7.6, C 7.7 (C	12	5.41(t, J = 2.4)	124.2, CH	5.4/(t, J = 2.4)	123.0, CH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13		139.8, C		144.9, C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	2.20 2.24 ()	43.9, C	2.2(44.1, C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	2.30 - 2.34 (m)	29.6, CH_2	2.26 - 2.29 (m)	29.4, CH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1.08 - 1.12 (m)	26 4 CH	1.03 - 1.05 (m)	29.2 CII
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2.94 - 2.97 (<i>m</i>) 1.02 - 1.05 (<i>m</i>)	20.4, CH ₂	2.04 - 2.00 (m)	$28.3, CH_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	1.92 - 1.93 (m)	50.4 C	$1.99 - 2.01 \ (m)$	50 / C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	2.81 (a)	54.9 CH	2.56 (br. c)	50.4, C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2.01 (3)	72.0 C	3.50 (01.8) 2.55 (d. I - 4.8)	45.0, CH 81.4 CH
20 $1.16 - 1.21 (m)$ $42.5, CH$ $5.3, CH$ 21 $1.31 - 1.34 (m)$ $27.0, CH_2$ $1.33 - 1.35 (m)$ $29.3, CH_2$ $1.91 - 1.94 (m)$ $2.21 - 2.24 (m)$ $2.21 - 2.24 (m)$ 22 $0.99 - 1.01 (m)$ $41.3, CH_2$ $1.00 - 1.02 (m)$ $32.9, CH_2$ $1.24 - 1.26 (m)$ $1.33 - 1.36 (m)$ $3.3 - 1.36 (m)$ 23 $3.93 (d, J = 10.8)$ $65.3, CH_2$ $4.02 (d, J = 10.8)$ $65.3, CH_2$ $3.64 (d, J = 10.8)$ $65.3, CH_2$ $3.73 (d, J = 10.8)$ $65.3, CH_2$ 24 $0.72 (s)$ $14.2, CH_3$ $0.81 (s)$ $14.1, CH_3$ 25 $1.07 (s)$ $17.4, CH_3$ $0.97 (s)$ $17.2, CH_3$ 26 $0.90 (s)$ $17.0, CH_3$ $1.12 (s)$ $17.6, CH_3$ 27 $1.52 (s)$ $24.8, CH_3$ $1.55 (s)$ $25.0, CH_3$ 28 $177.3, C$ $177.6, C$ $177.6, C$ 29 $1.27 (s)$ $27.3, CH_3$ $1.12 (s)$ $29.1, CH_3$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (s)$ $25.2, CH_3$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $74.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.39 (br, d, J = 12.0)$ $62.6, CH_2$ $4.38 (br, d, J = 12.0)$ $62.8, CH_2$ </td <td>19</td> <td>1.19 + 1.21 (m)</td> <td>75.0, C</td> <td>5.55(a, J - 4.6)</td> <td>81.4, СП 25.0, С</td>	19	1.19 + 1.21 (m)	75.0, C	5.55(a, J - 4.6)	81.4, СП 25.0, С
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1.10 - 1.21 (m) 1.21 - 1.24 (m)	42.3, CH	$1.33 1.35 \ (m)$	20.3 CH
1.911.941.912.212.241.0022 $0.99 - 1.01$ (m) 41.3 , CH2 $1.00 - 1.02$ (m) 32.9 , CH2 $1.24 - 1.26$ (m) $1.33 - 1.36$ (m) $33 - 1.36$ (m) 32.9 , CH223 3.93 (d, $J = 10.8$) 65.3 , CH2 4.02 (d, $J = 10.8$) 65.3 , CH2 3.64 (d, $J = 10.8$) 3.73 (d, $J = 10.8$) 57.3 (d, $J = 10.8$) 65.3 , CH224 0.72 (s) 14.2 , CH3 0.81 (s) 14.1 , CH325 1.07 (s) 17.4 , CH3 0.97 (s) 17.2 , CH326 0.90 (s) 17.0 , CH3 1.12 (s) 17.6 , CH327 1.52 (s) 24.8 , CH3 1.55 (s) 25.0 , CH328 177.3 , C 177.6 , C 177.6 , C29 1.27 (s) 27.3 , CH3 1.12 (s) 25.2 , CH330 1.00 (d, $J = 6.6$) 17.4 , CH3 0.96 (s) 25.2 , CH3 $1'$ 6.18 (d, $J = 8.4$) 96.2 , CH 6.36 (d, $J = 7.8$) 96.3 , CH $2'$ $4.11 - 4.14$ (m) 74.4 , CH $4.19 - 4.22$ (m) 74.5 , CH $3'$ $4.20 - 4.22$ (m) 79.6 , CH 4.38 (m) 71.5 , CH $3'$ $4.20 - 4.22$ (m) 79.6 , CH 4.38 (m) 71.5 , CH $4'$ $4.24 - 4.27$ (m) 71.7 , CH 4.38 (m) 71.5 , CH $5'$ $4.09 - 4.12$ (m) 79.7 , CH $4.18 - 4.20$ (m) 79.6 , CH2 4.38 (br, d, $J = 12.0$) 62.8 , CH2 4.39 (br, d, $J = 12.0$) 62.6 , CH2	21	1.51 - 1.54 (m) 1.01 - 1.04 (m)	$27.0, CH_2$	1.55 - 1.55 (m) 2.21 - 2.24 (m)	29.3, CH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1.91 - 1.94 (m) 0.99 - 1.01 (m)	41.3 CH	2.21 - 2.24 (m) 1.00 - 1.02 (m)	32.9 CH-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1.24 - 1.26 (m)	41.5, CH2	1.00 - 1.02 (m) 1.33 1.36 (m)	<i>32.9</i> , C11 ₂
25 $3.53 (d, J = 10.5)$ $3.53, CH_2$ $4.62 (d, J = 10.5)$ $50.3, CH_2$ $3.64 (d, J = 10.8)$ $3.73 (d, J = 10.8)$ $3.73 (d, J = 10.8)$ 24 $0.72 (s)$ $14.2, CH_3$ $0.81 (s)$ $14.1, CH_3$ 25 $1.07 (s)$ $17.4, CH_3$ $0.97 (s)$ $17.2, CH_3$ 26 $0.90 (s)$ $17.0, CH_3$ $1.12 (s)$ $17.6, CH_3$ 27 $1.52 (s)$ $24.8, CH_3$ $1.55 (s)$ $25.0, CH_3$ 28 $177.3, C$ $177.6, C$ $177.6, C$ 29 $1.27 (s)$ $27.3, CH_3$ $1.12 (s)$ $29.1, CH_3$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (s)$ $25.2, CH_3$ 1' $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $96.3, CH$ 2' $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $74.5, CH$ 3' $4.20 - 4.22 (m)$ $79.6, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ 4' $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ 5' $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $79.6, CH$ 6' $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.34 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $62.6, CH_2$	23	3.93 (d I = 10.8)	65.3 CH	4.02 (d I = 10.8)	65.3 CH
24 $0.72 (s)$ $14.2, CH_3$ $0.81 (s)$ $14.1, CH_3$ 25 $1.07 (s)$ $17.4, CH_3$ $0.97 (s)$ $17.2, CH_3$ 26 $0.90 (s)$ $17.0, CH_3$ $1.12 (s)$ $17.6, CH_3$ 27 $1.52 (s)$ $24.8, CH_3$ $1.55 (s)$ $25.0, CH_3$ 28 $177.3, C$ $177.6, C$ 29 $1.27 (s)$ $27.3, CH_3$ $1.12 (s)$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (s)$ $1'$ $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.36 - 4.38 (m)$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $4'$ $4.24 - 4.27 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $5'$ $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $6'$ $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$	25	3.55(u, J = 10.8) 3.64(d, I = 10.8)	05.5, CH2	4.02 (u, J = 10.8) 3.73 (d $I = 10.8$)	$05.5, C11_2$
27 $3.72 (6)$ $17.4, CH_3$ $0.97 (s)$ $17.4, CH_3$ 25 $1.07 (s)$ $17.4, CH_3$ $0.97 (s)$ $17.2, CH_3$ 26 $0.90 (s)$ $17.0, CH_3$ $1.12 (s)$ $17.6, CH_3$ 27 $1.52 (s)$ $24.8, CH_3$ $1.55 (s)$ $25.0, CH_3$ 28 $177.3, C$ $177.6, C$ 29 $1.27 (s)$ $27.3, CH_3$ $1.12 (s)$ $29.1, CH_3$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (s)$ $25.2, CH_3$ $1'$ $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $96.3, CH$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $74.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.28 - 4.30 (m)$ $79.3, CH$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $5'$ $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $79.6, CH$ $6'$ $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.44 (br. d, J = 12.0)$	24	0.72 (s)	14.2 CH ₂	0.81 (s)	14.1 CH ₂
26 $100 (g)$ $111, GH_3$ $000 (g)$ $112 (g)$ $112, GH_3$ 26 $0.90 (g)$ $170, CH_3$ $1.12 (g)$ $176, CH_3$ 27 $1.52 (g)$ $24.8, CH_3$ $1.55 (g)$ $25.0, CH_3$ 28 $177.3, C$ $177.6, C$ 29 $1.27 (g)$ $27.3, CH_3$ $1.12 (g)$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (g)$ $1'$ $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $96.3, CH$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $74.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.28 - 4.30 (m)$ $79.3, CH$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $5'$ $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $79.6, CH$ $6'$ $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $62.6, CH_2$	25	1.07 (s)	17.4 CH ₂	0.01(3)	17.2 CH ₂
27 1.52 (s) 24.8 , CH_3 1.15 (s) 25.0 , CH_3 28 177.3 , C 177.6 , C 29 1.27 (s) 27.3 , CH_3 1.12 (s) 29.1 , CH_3 30 1.00 (d, $J = 6.6$) 17.4 , CH_3 0.96 (s) 25.2 , CH_3 $1'$ 6.18 (d, $J = 8.4$) 96.2 , CH 6.36 (d, $J = 7.8$) 96.3 , CH $2'$ $4.11 - 4.14$ (m) 74.4 , CH $4.19 - 4.22$ (m) 74.5 , CH $3'$ $4.20 - 4.22$ (m) 79.6 , CH $4.36 - 4.38$ (m) 71.5 , CH $4'$ $4.24 - 4.27$ (m) 71.7 , CH $4.36 - 4.38$ (m) 71.5 , CH $5'$ $4.09 - 4.12$ (m) 79.7 , CH $4.18 - 4.20$ (m) 79.6 , CH $6'$ 4.30 (br. d, $J = 12.0$) 62.8 , CH_2 4.39 (br. d, $J = 12.0$) 62.6 , CH_2 4.44 (br. d, $J = 12.0$) 4.44 (br. d, $J = 12.0$) 62.6 , CH_2	25 26	0.90(s)	17.0, CH ₂	1 12 (s)	17.6 CH ₂
28 $177.3, C$ $177.6, C$ 29 $1.27 (s)$ $27.3, CH_3$ $1.12 (s)$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (s)$ $1'$ $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.36 - 4.38 (m)$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $5'$ $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $6'$ $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$	20	1.52(s)	24.8 CH ₂	1.12(3) 1 55 (s)	25.0 CH ₂
29 $1.27 (s)$ $27.3, CH_3$ $1.12 (s)$ $29.1, CH_3$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (s)$ $25.2, CH_3$ $1'$ $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $96.3, CH$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $74.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $5'$ $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $79.6, CH$ $6'$ $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.44 (br. d, J = 12.0)$	28	102 (0)	177.3 C		177.6 C
25 $1121(9)$ 213.5 $1112(9)$ $25.7, CH_3$ 30 $1.00 (d, J = 6.6)$ $17.4, CH_3$ $0.96 (s)$ $25.2, CH_3$ $1'$ $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $96.3, CH$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $74.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.28 - 4.30 (m)$ $79.3, CH$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $5'$ $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $79.6, CH$ $6'$ $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.44 (br. d, J = 12.0)$	29	1.27 (s)	27.3 CH ₂	1 12 (s)	29.1 CH ₂
$1'$ $6.18 (d, J = 8.4)$ $96.2, CH$ $6.36 (d, J = 7.8)$ $96.3, CH$ $2'$ $4.11 - 4.14 (m)$ $74.4, CH$ $4.19 - 4.22 (m)$ $74.5, CH$ $3'$ $4.20 - 4.22 (m)$ $79.6, CH$ $4.28 - 4.30 (m)$ $79.3, CH$ $4'$ $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ $5'$ $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $79.6, CH$ $6'$ $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$	30	1.00 (d, I = 6.6)	17.4. CH ₂	0.96(s)	25.2, CH ₂
2' $4.11 - 4.14 (m)$ 74.4 , CH $4.19 - 4.22 (m)$ 74.5 , CH $3'$ $4.20 - 4.22 (m)$ 79.6 , CH $4.28 - 4.30 (m)$ 79.3 , CH $4'$ $4.24 - 4.27 (m)$ 71.7 , CH $4.36 - 4.38 (m)$ 71.5 , CH $5'$ $4.09 - 4.12 (m)$ 79.7 , CH $4.18 - 4.20 (m)$ 79.6 , CH $6'$ $4.30 (br. d, J = 12.0)$ 62.8 , CH ₂ $4.39 (br. d, J = 12.0)$ 62.6 , CH ₂ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ 62.6 , CH ₂	1'	6.18 (d, J = 8.4)	96.2 CH	6.36 (d, I = 7.8)	96.3. CH
3' $4.20 - 4.22 (m)$ 79.6, CH $4.28 - 4.30 (m)$ 79.3, CH4' $4.24 - 4.27 (m)$ 71.7, CH $4.36 - 4.38 (m)$ 71.5, CH5' $4.09 - 4.12 (m)$ 79.7, CH $4.18 - 4.20 (m)$ 79.6, CH6' $4.30 (br. d, J = 12.0)$ 62.8 , CH ₂ $4.39 (br. d, J = 12.0)$ 62.6 , CH ₂ $4.44 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ 62.6 , CH ₂	2'	4.11 - 4.14 (m)	74.4. CH	4.19 - 4.22 (m)	74.5. CH
4' $4.24 - 4.27 (m)$ $71.7, CH$ $4.36 - 4.38 (m)$ $71.5, CH$ 5' $4.09 - 4.12 (m)$ $79.7, CH$ $4.18 - 4.20 (m)$ $79.6, CH$ 6' $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.38 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $62.6, CH_2$	3'	4.20 - 4.22 (m)	79.6. CH	4.28 - 4.30 (m)	79.3, CH
5' $4.09 - 4.12 (m)$ 79.7, CH $4.18 - 4.20 (m)$ 79.6, CH6' $4.30 (br. d, J = 12.0)$ $62.8, CH_2$ $4.39 (br. d, J = 12.0)$ $62.6, CH_2$ $4.38 (br. d, J = 12.0)$ $4.44 (br. d, J = 12.0)$ $62.6, CH_2$	4′	4.24 - 4.27 (m)	71.7. CH	4.36 - 4.38 (m)	71.5, CH
$6'$ 4.30 (br. $d, J = 12.0$) $62.8, CH_2$ 4.39 (br. $d, J = 12.0$) $62.6, CH_2$ 4.38 (br. $d, J = 12.0$) 4.44 (br. $d, J = 12.0$) $62.6, CH_2$	5'	4.09 - 4.12 (m)	79.7, CH	4.18 - 4.20 (m)	79.6, CH
4.38 (br. $d, J = 12.0$) 4.44 (br. $d, J = 12.0$)	6'	4.30 (br. $d, J = 12.0$)	62.8, CH ₂	4.39 (br. $d, J = 12.0$)	62.6, CH ₂
		4.38 (br. $d, J = 12.0$)	7 - 2	4.44 (br. $d, J = 12.0$)	

Bruker AV 600 NMR spectrometer (chemical shift values are presented as δ values with TMS as the internal standard; Bruker, Billerica, MA, USA). HR-ESI-MS: LTQ-Obitrap XL spectrometer (Thermo Fisher Scientific, Boston, MA, USA). Silica gel (SiO₂; 100 – 200 and 300 – 400 mesh, Qingdao Marine Chemical Plant, Qingdao, P. R. China) was used for column chromatography. Precoated SiO₂ GF254 plates (Zhi Fu Huang Wu Pilot Plant of Silica Gel Development, Yantai, P. R. China) were used for TLC analysis. All solvents used were of analytical grade (*Beijing Chemical Works*, Beijing, P. R. China).

Plant Material

The roots of *Rosa cymosa* were provided by *Guilin Sanjin Pharmaceutical Company Limited*, collected from Guilin, Guangxi Province, P. R. China and identified by Prof. *Bin Dai*, Guangxi Research Institute of Minority Medicine. A

Fig. 2. Key HMBC correlations of compound 1

Table 2. Inhibitory Activity of Compounds 1 – 5 on LPS-Induced NO Production in Raw 264.7 Macrophages

Compounds	$IC_{50} \ [\mu g/ml]^a)$	
1	9.28 ± 0.43	
2	7.96 ± 0.32	
3	3.42 ± 0.61	
4	2.21 ± 0.55	
5	3.24 ± 0.63	
Aminoguanidine ^b)	0.94 ± 0.20	

 $^{a})$ Value present mean \pm SD of triplicate experiments. $^{b})$ Positive control substance.

voucher specimen (NO. 02132181) was deposited with the Guangxi Botanical Garden of Medical Plant.

Extraction and Isolation

The dried root of Rosa cymosa (10.0 kg) were extracted three times with 75% EtOH. The 75% EtOH extraction was concentrated under reduced pressure and the residue was dissolved in H₂O. The mixture was extracted using petroleum ether (PE) and AcOEt, respectively. The H₂Osoluble fraction was subjected to D-101 macroreticular resin eluted with H₂O, EtOH/H₂O (35:65), EtOH/H₂O (55:45), EtOH/H₂O (75:25), and EtOH/H₂O (95:5), respectively. The EtOH/H₂O (75:25) fraction (40.0 g) was subject to column chromatography on SiO₂ eluting with $CH_2Cl_2/MeOH$ gradient (40:1; 20:1; 10:1; 5:1, 0:1 v/v), to yield five fractions (Frs. I-V). The Fr. II (2.1 g) was separated using SiO₂ CC eluting with CH₂Cl₂/MeOH (80:1; 60:1; 40:1; 20:1; 10:1; 5:1, v/v) to give six subfractions, II_{1-6} . Subfraction II_3 was prepared by HPLC using MeOH/H₂O (65:35, v/v) on YMC-Pack ODS-A column to give compounds 3 (20.0 mg, $t_{\rm R}$ = 20.5 min) and 5 (23.0 mg, $t_{\rm R}$ = 33.1 min). Subfraction II_4 was prepared by HPLC using MeOH/H₂O (65:35, v/v) on YMC-Pack ODS-A column to give compound 1 (10.0 mg, $t_{\rm R}$ = 21.6 min). The Fr. III (3.4 g) was subjected to SiO_2 CC eluting with CH₂Cl₂/MeOH (60:1; 40:1; 20:1; 10:1, v/v) to afford four subfractions III_{1-4} . Subfractions III_{2} and III_{3} were separated by prep. HPLC using MeOH/H₂O (58:42) and (65:35) on YMC-Pack ODS-A column, respectively, (10 mg, $t_{\rm R} = 14.2$ min). **3** α ,**19** α ,**23** α -**Trihydroxy-2-oxo-12-ursen-28-***O*- β -D-glucopyra **noside** (= **1**-*O*-[(**3** α)-**3**,**19**,**23**-trihydroxy-**2**,**28**-dioxours-12en-28-yl]- β -D-glucopyranose; **1**). White amorphous powder. [α]_D²⁰ = +27.4 (c = 0.12, MeOH); UV (MeOH): 208 (4.01). IR (KBr): 3573-3392, 1712, 1689, 1653. ¹H- and ¹³C-NMR ((D₅)pyridine): see *Table 1*. HR-ESI-MS: 687.3810 ([M + Na]⁺, C₃₆H₅₆NaO⁺₁₁; calc. 687.3720).

3*α*,**19***α*,**23***α*-**Trihydroxy-2-oxoolean-12-en-28-***O*-*β*-D-glucopyranoside (= **1-O-[(3***α***,19***α***)-3**,19,23-**Trihydroxy-2**,28-**dioxoolean-12-en-28-yl]-***β***-D-glucopyranose; 2**). White amorphous powder. [α]_D²⁰ = +19.1 (c = 0.12, MeOH). UV: (MeOH): 208 (4.01). IR (KBr): 3623-3452, 1723, 1699, 1643. ¹H- and ¹³C-NMR ((D₅)pyridine): see *Table 1*. HR-ESI-MS: 687.3802 ([M + Na]⁺, C₃₆H₅₆NaO₁⁺; calc. 687.3720).

Acid Hydrolysis of 1-2

Compounds 1 - 2 (each 2.0 mg) were treated with 1M HCl (1 ml) and heated under reflux for 3 h, respectively. After extraction with CH₂Cl₂ (3 ml × 3), the H₂O-soluble layer was evaporated to dryness and subjected to the HPLC analysis under the following conditions, respectively: HPLC column, *Purospher STAR NH2*, 5 mm × 250 mm (*Merck*, Darmstadt, Germany); detection, optical rotation (*Chiralyser-MP (IBZ Messtechnik GMBH*, Hannover, Germany)); mobile phase, MeCN/H₂O (68:32, v/v); and flow rate 1.0 ml/min. p-Glucose from 1 - 2 presented in the aq. phase was carried out by comparison of its retention time and optical rotation with that of authentic samples, t_R 24.7 min (positive).

Assay for Inhibitory Ability Against LPS-Induced NO Production in RAW 264.7 Macrophages

RAW 264.7 macrophages were seeded in 24-well plates $(10^5 \text{ cells/well})$. The cells were coincubated with drugs and LPS 1 µg/ml) for 24 h. The amount of NO was assessed by determining the nitrite concentration in the cultured RAW 264.7 macrophage supernates with *Griess* reagent. Aliquots of supernates (100 µl) were incubated, in-sequence, with 50 µl of 1% sulfanilamide and 50 µl of 0.1% naphthylethylenediamine in 2.5% phosphoric acid soln. The absorbance was recorded on a microplate reader at a wavelength of 570 nm.

REFERENCES

- G. J. Xu, H. X. He, S. L. Xu, R. Y. Jin, 'Chinese Materia Medica ('Zhonghua Benchao')', Chinese Medicinal Science & Technology Publishing House: Beijing, P. R. China, 1998, p. 124.
- [2] Editorial Committee of Flora of China, 'Flora of China', Science Press, Beijing, 1985, p. 763.
- [3] W. Z. Xie, 'Collection of Chinese Herbal Medicines', People's Medical Publishing House, Beijing, 1975, p. 93.
- [4] L. M. Ouyang, S. C. Huang, X. L. Huang, Y. Huang, Modern Chin. Med. 2012, 14, 4.

- [5] J. Zhang, B. Q. Li, F. Feng, Y. P. Tang, W. Y. Liu, Chin. J. Chin. Mater. Med. 2010, 35, 3297.
- [6] T. H. Quang, N. T. Thanh Ngan, C. V. Minh, P. V. Kiem, H.-J. Boo, J.-W. Hyun, H.-K. Kang, Y. H. Kim, *Phytochem. Lett.* 2012, 5, 177.
- [7] F. L. Hu, R. L. Lu, Chin. Bull. Bot. 2004, 21, 74.
- [8] M. N. Samy, S. Sugimoto, K. Matsunami, H. Otsuka, M. S. Kamel, *Phytochem. Lett.* 2014, 10, 86.
- [9] L. Liao, X. Zhou, Y.-L. Liu, Q.-M. Xu, X.-R. Li, S.-L. Yang, *Phytochem. Lett.* **2013**, *6*, 429.
- [10] H.-X. Kuang, H.-W. Li, Q.-H. Wang, B.-Y. Yang, Z.-B. Wang, Y.-G. Xia, *Molecules* **2011**, *16*, 4642.
- [11] N. X. Nhiem, B. H. Tai, T. H. Quang, P. V. Kiem, C. V. Minh, N. H. Nam, J.-H. Kim, L.-R. Im, Y.-M. Lee, Y. H. Kim, *Bioog. Med. Chem. Lett.* **2011**, *21*, 1777.

- [12] L. W. Zhang, J. N. Zhao, J. W. Xu, J. Jilin Agric. Univ. 2010, 32, 37.
- [13] T. Seto, T. Tanaka, O. Tanaka, N. Naruhashi, *Phytochemistry* 1984, 23, 2829.
- [14] T.-H. Lee, S.-S. Lee, Y.-C. Kuo, C.-H. Chou, J. Nat. Prod. 2001, 64, 865.
- [15] Y. Wang, W. C. Ye, Z. Q. Yin, S. X. Zhao, Acta Pharm. Sin. 2008, 43, 504.

Received January 11, 2016 Accepted March 7, 2016